Чем отличается rs232 от rs485. Приемопередатчики MAXIM для индустриальных интерфейсов – обзор новинок. Защита систем передачи данных от неблагоприятных внешних воздействий

В данной статье представлено введение в интерфейсы RS-422 и RS-485 и объясняется, почему вы можете захотеть использовать их в своих проектах.

Связанная информация

  • Зачем и как использовать дифференциальную передачу сигналов
  • Технология двойной буферизации UART, дружественная к прерываниям

Большинство из нас знакомы с RS-232 - надежным, но неудобным стандартом, который навсегда связан с нашими воспоминаниями обо всё более устаревающем последовательном порте на компьютере. Вы можете быть менее знакомы с RS-422 и RS-485, которые действительно (как следует из названия) связаны с RS-232.

Однако не делайте ошибку, полагая, что эти более новые стандарты разделяют с ним характеристики, которые делают RS-232 настолько несовместимым с современными электронными системами. RS-422 и RS-485 являются основными улучшениями в теме RS-232; и тот, и другой может быть хорошим выбором для вашего следующего канала цифровой связи.

Во-первых, RS-422 или RS-485

Эти два стандарта обычно группируются вместе потому, что у них очень много общего. Но они, конечно, не идентичны, а устройства RS-422 и RS-485 не являются полностью взаимозаменяемыми. Во-первых, я расскажу о значительных различиях между этими двумя стандартами. Затем, в остальной части статьи, мы сможем сделать упрощение, ссылаясь к ним как «RS-422/485».

Оба стандарта (и RS-422, и RS-485) позволяют использовать несколько устройств на шине (т.е. вы не ограничены одним передатчиком и одним приемником). Однако RS-422 может использоваться только для многоабонентской шины, т.е. дифференциальная пара может иметь несколько приемников, но только один передатчик.

Максимальное количество приемников на двухпроводной шине RS-422 равно 10 (ну, вроде... смотрите ниже обсуждение «единичных нагрузок»).

С другой стороны, с RS-485 вы можете иметь реальную многоточечную систему, где «точка» вместо «абонента» означает, что одна дифференциальная пара может поддерживать несколько передатчиков, а также несколько приемников.

RS-485 также увеличивает емкость шины до 32 устройств.

(На самом деле, это не так просто - стандарт указывает максимум 32 «единичные нагрузки», но вы можете подключить гораздо больше 32 устройств, используя микросхемы RS-485, которые представляют собой на шине лишь малую долю единичной нагрузки. Это немного сложно, и честно говоря, это тот момент, когда я начинаю терять интерес... Но если вы более упорны, чем я, то можете прочитать подробности .)

Полностью укомплектованная шина RS-485 представляет собой высокопроизводительный интерфейс. В дополнение к преимуществам, рассмотренным далее в этой статье, вы можете иметь множество приемопередатчиков, которые используют одни и те же два провода, а любое устройство на шине может отправлять данные на любое другое устройство на шине.

Другим важным моментом является то, что RS-485 является важным расширением RS-422. Другими словами, RS-485 добавляет и улучшает функциональность, но не конфликтует ни с чем в стандарте RS-422. Таким образом, устройство RS-485 может использоваться в сети RS-422, но устройства RS-422 не обязательно совместимы с существующей сетью RS-485.

Основы

RS-422/485 представляет собой четырех- или двухпроводный, полнодуплексный или полудуплексный, дифференциальный, среднескоростной последовательный интерфейс, который поддерживает многоабонентскую (RS-422) или многоточечную (RS-485) архитектуру шины. Вот некоторые комментарии к этим характеристикам:


Мне это нравится

Характеристики RS-422/485 - большие длины кабелей, устойчивость к шуму и т.д. - делают его отличным выбором для промышленного применения. Однако часть моей задачи в данной статье - продемонстрировать, что RS-422/485 является хорошим выбором для многих электронных и электромеханических систем, даже если вам не нужны все функциональные возможности, которые он предлагает. Мой благосклонный взгляд на RS-422/485 основан, прежде всего, на трех соображениях: простота проектирования, отличная поддержка в технических описаниях микросхем и в примечаниях к применению, устойчивость к шуму.

Будь проще

Несмотря на многолетний опыт работы с различными протоколами последовательной связи, UART по-прежнему остается моим любимым. Он прост и надежен, он требует минимальных взаимосвязей, и я не удивлюсь, если обнаружу, что он поддерживается каждым микроконтроллером на рынке. Он может быть немного примитивен, но вы всегда можете написать прошивку для реализации любого управления потоком данным, идентификации устройства или проверки ошибок в вашем конкретном приложении.

В любом случае, я хочу сказать, что мне нравится использовать UART каждый раз, когда я могу, и RS-422/485 - отличный физический уровень для связи UART.

Поддержка со стороны экспертов

RS-422/485 включить в ваш проект просто: практически всё, что вам нужно, это микросхема конвертера/приемопередатчика, а их выбор велик. Эти устройства преобразуют типовые логические сигналы в дифференциальные сигналы RS-422/485, а также обрабатывают остальные докучливые детали, необходимые для обеспечения соответствия стандарту RS-422/485. И если вы не уверены в том, как точно спроектировать вашу конкретную шину связи, вы найдете множество рекомендаций в примечаниях к применению и в технических описаниях.

Интерфейс стандарта EIA RS232C предназначен для последовательной связи двух
устройств. Он является общепринятым и широко используется в аппаратных комплексах с
подсоединением внешнего оборудования к персональному компьютеру. Интерфейс
RS/232C предусматривает использование «несимметричных» передатчиков и
приемников, при этом передача данных осуществляется с помощью «несимметричного»
сигнала по двум линиям – ТхD и RxD, а амплитуда сигнала измеряется относительно линии
GND («нуля»). Логической единице соответствует диапазон значений амплитуды
сигнала (напряжения) от –12 до –3 В, логическому нулю – от +3 до +12 В. Диапазон от
–3 до +3 В соответствует зоне нечувствительности, определяющей гистерезис приемника.
Несимметричность сигнала обуславливает низкую помехозащищенность данного
интерфейса, особенно при промышленных помехах. Наличие линий приема (RxD) и передачи
(TxD) данных позволяет поддерживать полнодуплексную передачу информации, т.е.
одновременно информация может как передаваться, так и приниматься.

Достоинства - простота.

Недостатки - к одному порту подключается только одно устройство, дальность передачи сигналов без дополнительных примочек - всего несколько метров

Для управления потоком данных наиболее широко используется аппаратный способ
управления. Для корректной передачи данных необходимо, чтобы приемник находился в
состоянии готовности к приему информации. При аппаратном способе управления
используется сигнал RTS/CTS, который позволяет остановить передачу данных, если
приемник не готов к их приему. Аппаратное управление потоком данных обеспечивает самую
быструю реакцию передатчика на состояние приемника.
При проектировании промышленных систем автоматизации наибольшее
распространение получили информационные сети, основанные на интерфейсе стандарта
EIA RS485. В отличие от RS/232, этот интерфейс предусматривает передачу данных с
помощью «симметричного» (дифференциального) сигнала по двум линиям (А и В)
(см.рисунок) и использование дополнительной линии для выравнивания потенциалов
заземления устройств, объединенных в сеть стандарта RS/485. Логический уровень сигнала
определяется разностью напряжений на линиях (А – В), при этом логической единице
соответствует диапазон значений напряжения от +0,2 до +5 В, а логическому нулю – диапазон
значений от –0,2 до –5 В. Диапазон от –0,2 до +0,2 В соответствует зоне нечувствительности
приемника. При использовании данного интерфейса максимальная длина линии связи между
крайними устройствами может составлять до 1200 м. При этом в максимально удаленных
друг от друга точках сети рекомендуется устанавливать оконечные согласующие резисторы
(терминаторы), позволяющие компенсировать волновое сопротивление кабеля и
минимизировать амплитуду отраженного сигнала.

Сопротивления согласующих резисторов зависит от длины линии и колличества приборов. Оно должно быть в пределах от 100 до 620 ОМ.

Оба указанных интерфейса поддерживаютасинхронный режим передачи. Данные
посылаются блоками (кадрами), формат которых представлен на рис. 1.2. Передача каждого
кадра начинается со старт/бита, сигнализирующего приемнику о начале передачи, за
которым следуют биты данных и бит четности. Завершает посылку стоп/бит, гарантирующий
паузу между посылками.
Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150,
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с. Количество бит данных
может составлять 5, 6, 7 или 8 (5/ и 6/битные форматы распространены незначительно).
Количество стоп/бит может составлять 1, 1,5 или 2 («полтора бита» означает только
длительность стопового интервала).

В условиях промышленного применения беспроводные линии передачи данных никогда не смогут полностью заменить проводные . Среди последних самым распространенным и надежным до сих пор остается последовательный интерфейс RS -485 . А производителем наиболее защищенных от внешних воздействий и разнообразных по конфигурации и степени интеграции приемопередатчиков для него, в свою очередь, остается компания Maxim Integrated .

Несмотря на рост популярности беспроводных сетей, наиболее надежную и устойчивую связь, особенно в жестких условиях эксплуатации, обеспечивают проводные. Правильно спроектированные проводные сети позволяют реализовать эффективную связь в промышленных приложениях и в системах автоматизированного управления производственными процессами, обеспечивая устойчивость к помехам, электростатическим разрядам и перенапряжениям. Отличительные особенности интерфейса RS-485 обусловили его широкое применение в индустрии.

Сравнение интерфейсов RS-485 и RS-422

Приемопередатчик RS-485 является наиболее распространенным интерфейсом физического уровня для реализации сетей с последовательной передачей данных, предназначенных для жестких условий эксплуатации в промышленных применениях и в системах автоматизированного управления зданиями. Данный стандарт последовательного интерфейса обеспечивает обмен данными с высокой скоростью на сравнительно большое расстояние по одной дифференциальной линии (витой паре). Основная проблема применения RS-485 в промышленности и в системах автоматизированного управления зданиями состоит в том, что электрические переходные процессы, возникающие при быстрой коммутации индуктивных нагрузок, электростатические разряды, а также импульсные перенапряжения, воздействуя на сети автоматизированных систем управления, способны исказить передаваемые данные или привести к выходу их из строя.

В настоящее время существует несколько типов интерфейсов передачи данных, каждый из которых разработан для конкретных применений с учетом требуемого набора параметров и структуры протокола. К числу интерфейсов последовательной передачи данных относятся CAN, RS-232, RS-485/RS-422, I 2 C, I 2 S, LIN, SPI и SMBus, однако RS-485 и RS-422 по-прежнему остаются наиболее надежными, особенно в жестких условиях эксплуатации.

Интерфейсы RS-485 и RS-422 во многом схожи, однако имеют некоторые существенные отличия, которые необходимо учитывать при проектировании систем передачи данных. В соответствии со стандартом TIA/EIA-422, интерфейс RS-422 специфицирован для промышленных применений с одним ведущим устройством шины данных, к которой может быть подключено до 10 ведомых устройств (рисунок 1). Он обеспечивает передачу на скорости до 10 Мбит/с, используя витую пару, что позволяет повысить помехоустойчивость и достичь максимально возможной дальности и скорости передачи данных. Типичные области применения RS-422 – автоматизация производственных процессов (производство химикатов, пищевое производство, бумажные фабрики), комплексная автоматизация производства (автомобильная и металлообрабатывающая промышленность), системы вентиляции и кондиционирования, системы безопасности, управление двигателями и контроль за перемещением объектов.

RS-485 обеспечивает более высокую гибкость благодаря возможности использования нескольких ведущих устройств на общей шине, а также увеличения максимального числа устройств на шине с 10 до 32. Согласно стандарту TIA/EIA-485, интерфейс RS-485 по сравнению с RS-422 имеет более широкий диапазон синфазного напряжения (-7…12 В вместо ±7В) и несколько меньший диапазон дифференциального напряжения (±1,5 В вместо ±2 В), что обеспечивает достаточный уровень сигнала приемника при максимальной нагрузке линии. Используя расширенные возможности многоточечной шины данных, можно создавать сети устройств, подключенных к одному последовательному порту RS-485. Благодаря высокой помехоустойчивости и возможности многоточечных подключений RS-485 является наилучшим среди последовательных интерфейсов для использования в промышленных распределенных системах, подключаемых к программируемому логическому контроллеру (PLC), графическому контроллеру (HMI) или другим контроллерам для сбора данных. Поскольку RS-485 является расширенным вариантом RS-422, все устройства RS-422 могут подключаться к шине, управляемой ведущим устройством RS-485. Типичные области применения для RS-485 аналогичны перечисленным выше областям применения RS-422, при этом более частое использование RS-485 объясняется его расширенными возможностями.

RS-485 – самый популярный промышленный интерфейс

Стандарт TIA/EIA-485 допускает использование RS-485 на расстоянии до 1200 м. На более коротких дистанциях скорости передачи данных – более 40 Мбит/с. Использование дифференциального сигнала обеспечивает интерфейсу RS-485 более высокую дальность, однако скорость передачи данных уменьшается по мере увеличения длины линии. На скорость передачи данных влияет также площадь сечения проводов линии и число устройств, подключенных к ней. При необходимости получения одновременно большой дальности и высокой скорости передачи данных рекомендуется использовать приемопередатчики RS-485 со встроенной функцией высокочастотной коррекции, например, MAX3291 . Интерфейс RS-485 может использоваться в полудуплексном режиме с применением одной витой пары проводов или в дуплексном режиме с одновременными передачей и приемом данных, что обеспечивается использованием двух витых пар (четыре провода). В многоточечной конфигурации в полудуплексном режиме RS-485 способен поддерживать до 32 передатчиков и до 32 приемников. Однако микросхемы приемопередатчиков нового поколения имеют более высокий входной импеданс, что позволяет снизить нагрузку приемника на линию от 1/4 до 1/8 стандартного значения. Например, при использовании приемопередатчика MAX13448E число приемников, подключаемых к шине RS-485, может быть увеличено до 256. Благодаря расширенному многоточечному интерфейсу RS-485 имеется возможность построения сетей различных устройств, подключенных к одному последовательному порту, как показано на рисунке 2.

Чувствительность приемника составляет ±200 мВ. Следовательно, для распознавания одного бита данных уровни сигнала в точке подключения приемника должны быть больше +200 мВ для нуля и меньше -200 мВ для единицы (рисунок 3). При этом приемник будет подавлять помехи, уровень которых находится в диапазоне ±200 мВ. Дифференциальная линия обеспечивает также эффективное подавление синфазных помех. Минимальное входное сопротивление приемника составляет 12 кОм, выходное напряжение передатчика находится в диапазоне ± 1,5…± 5 В.

Проблемы, связанные с использованием последовательного интерфейса в промышленной среде

Разработчики промышленных систем сталкиваются со сложными задачами по обеспечению их надежной эксплуатации в электромагнитной обстановке, способной вывести из строя оборудование или нарушить работу цифровых систем передачи данных. Одним из примеров подобных систем является автоматическое управление технологическим оборудованием на автоматизированном промышленном предприятии. Контроллер, управляющий процессом, измеряет его параметры, а также параметры окружающей среды, и передает команды исполнительным устройствам либо формирует аварийные оповещения. Промышленные контроллеры представляют собой, как правило, микропроцессорные устройства, архитектура которых оптимизирована для решения задач данного промышленного предприятия. Линии передачи данных топологии «точка-точка» в таких системах подвержены сильным электромагнитным помехам от воздействия окружающей среды.

Преобразователи постоянного напряжения, используемые в промышленном производстве, работают с высокими входными напряжениями и обеспечивают изолированные от входа напряжения для питания нагрузки. Для питания устройств распределенной системы, не имеющих собственного сетевого источника питания, используются напряжения 24 или 48 В DC. Питание оконечной нагрузки осуществляется напряжением 12 или 5 В, полученным путем преобразования входного напряжения. Системам, обеспечивающим связь с удаленными датчиками или исполнительными устройствами, требуется защита от переходных процессов, электромагнитных помех и разности потенциалов земли.

Многие компании, такие как Maxim Integrated, прилагают большие усилия, чтобы интегральные микросхемы для промышленных применений отличались высокой надежностью и устойчивостью к неблагоприятной электромагнитной обстановке. Приемопередатчики RS-485 производства компании Maxim содержат встроенные цепи защиты от высоковольтных электростатических разрядов и импульсных перенапряжений и обладают возможностью «горячей» замены без потери данных в линии.

Защита систем передачи данных от неблагоприятных внешних воздействий

Усиленная защита от ЭСР

Электростатический разряд (ЭСР) возникает при соприкосновении двух противоположно заряженных материалов, вследствие чего происходит перенос статических зарядов и формируется искровой разряд. ЭСР часто возникает при контакте людей с окружающими предметами. Искровые разряды, возникающие при небрежном обращении с полупроводниковыми приборами, могут существенно ухудшить их характеристики или привести к полному разрушению полупроводниковой структуры. ЭСР может возникнуть, например, при замене кабеля или простом прикосновении к порту ввода-вывода и привести к отключению порта вследствие выхода из строя одной или нескольких микросхем интерфейса (рисунок 4).

Подобные аварии могут приводить к значительным убыткам, так как повышают стоимость гарантийного ремонта и воспринимаются потребителями как следствие низкого качества продукта. В промышленном производстве ЭСР представляет собой серьезную проблему, способную причинить убытки в миллиарды долларов ежегодно. В реальных условиях эксплуатации ЭСР может привести к отказу отдельных компонентов, а иногда и системы в целом. Для защиты интерфейсов передачи данных могут использоваться внешние диоды, однако некоторые интерфейсные микросхемы содержат встроенные компоненты защиты от ЭСР и не требуют дополнительных внешних цепей защиты. На рисунке 5 показана упрощенная функциональная схема типовой встроенной цепи защиты от ЭСР. Импульсные помехи в сигнальной линии ограничиваются диодной схемой защиты на уровнях напряжения питания V CC и земли и, таким образом, защищают внутреннюю часть схемы от повреждений. Производимые в настоящее время микросхемы интерфейсов и аналоговые коммутаторы со встроенной защитой от ЭСР в основном соответствуют стандарту МЭК (IEC) 61000-4-2.

Компания Maxim Integrated инвестировала значительные средства в разработку микросхем с надежной встроенной защитой от ЭСР и в настоящее время занимает лидирующие позиции в производстве приемопередатчиков интерфейсов от RS-232 до RS-485. Данные устройства выдерживают воздействие испытательных импульсов ЭСР, соответствующих МЭК (IEC) 61000-4-2 и JEDEC JS-001, непосредственно на порты ввода-вывода. Решения компании Maxim в области защиты от ЭСР отличаются надежностью, доступностью, отсутствием дополнительных внешних компонентов и меньшей стоимостью по сравнению с большинством аналогов. Все микросхемы интерфейсов производства этой компании содержат встроенные элементы, обеспечивающие защиту каждого вывода от ЭСР, возникающих в процессе производства и эксплуатации. Приемопередатчики семейства MAX3483AE /MAX3485AE обеспечивают защиту выходов передатчиков и входов приемников от воздействия высоковольтных импульсов амплитудой до ±20 кВ. При этом сохраняется нормальный режим работы изделий, не требуется выключения и повторного включения питания. Кроме того, встроенные элементы защиты от ЭСР обеспечивают функционирование при включении и выключении питания, а также в дежурном режиме с низким энергопотреблением.

Защита от перенапряжений

В промышленных применениях входы и выходы драйверов RS-485 подвержены сбоям, возникающим в результате импульсных перенапряжений. Параметры импульсных перенапряжений отличаются от ЭСР – в то время как длительность ЭСР обычно находится в диапазоне до 100 нс, длительность импульсных перенапряжений может составлять 200 мкс и более. Причинами возникновения перенапряжений могут быть ошибки проводного монтажа, плохие контакты, поврежденные или неисправные кабели, а также капли припоя, которые могут образовывать токопроводящее соединение между силовыми и сигнальными линиями на печатной плате или в разъеме. Поскольку в промышленных системах электропитания используются напряжения, превышающие 24 В, воздействие таких напряжений на стандартные приемопередатчики RS-485, не имеющие защиты от перенапряжений, приведет к их выходу из строя в течение нескольких минут или даже секунд. Для защиты от импульсных перенапряжений обычные микросхемы интерфейса RS-485 требуют дорогостоящих внешних устройств, выполненных на дискретных компонентах. Приемопередатчики RS-485 со встроенной защитой от перенапряжений способны выдерживать синфазные помехи в линии передачи данных до ±40, ±60 и ±80 В. Компания Maxim производит линейку приемопередатчиков RS-485/RS-422 MAX13442E …MAX13444E , устойчивых к постоянным напряжениям на входах и выходах до ±80 В относительно земли. Элементы защиты функционируют независимо от текущего состояния микросхемы, – включена ли она, выключена или находится в дежурном режиме, – что позволяет характеризовать данные приемопередатчики как наиболее надежные в отрасли, идеально подходящие для промышленных применений. Приемопередатчики производства компании Maxim сохраняют работоспособность при перенапряжениях, обусловленных замыканием силовых и сигнальных линий, ошибками проводного монтажа, неправильным подключением разъемов, дефектами кабелей и неправильной эксплуатацией.

Устойчивость приемников к неопределенным состояниям линии

Важной характеристикой микросхем интерфейса RS-485 является невосприимчивость приемников к неопределенным состояниям линии, что гарантирует установку высокого логического уровня на выходе приемника при разомкнутых или замкнутых входах, а также при переходе всех передатчиков, подключенных к линии, в неактивный режим (высокоимпедансное состояние выходов). Проблема корректного восприятия приемником сигналов замкнутой линии данных решается путем смещения порогов входного сигнала до отрицательных напряжений -50 и -200 мВ. Если входное дифференциальное напряжение приемника V A – V B больше или равно -50 мВ – на выходе R 0 устанавливается высокий уровень. Если V A – V B меньше или равно -200 мВ – на выходе R 0 устанавливается низкий уровень. При переходе всех передатчиков в неактивное состояние и наличии в линии оконечной нагрузки дифференциальное входное напряжение приемника близко к нулю, вследствие чего на выходе приемника устанавливается высокий уровень. При этом запас помехоустойчивости по входу составляет 50 мВ. В отличие от приемопередатчиков предыдущего поколения, пороги -50 и -200 мВ соответствуют значениям ±200 мВ, установленным стандартом EIA/TIA-485.

Возможность «горячей» замены

Литература

  1. Application note 4491, «Damage from a Lightning Bolt or a Spark–It Depends on How Tall You Are!»;
  2. Application note 5260, «Design Considerations for a Harsh Industrial Environment»;
  3. Application note 639, «Maxim Leads the Way in ESD Protection».

Роберт Джи (Robert Gee), перевод и дополнения Владимир Рентюк

Оба интерфейсных протокола - RS 485 (стандарт физического уровня для асинхронного интерфейса) и CAN (Controller Area Network - стандарт промышленной сети, ориентированный, прежде всего, на объединение в единую сеть различных исполнительных устройств и датчиков) - существуют еще с середины 1980 х годов, когда они были впервые представлены в качестве стандартов для организации каналов связи. Долгое время эти интерфейсы развивались сами по себе, не касаясь друг друга. Но прошло время, и ситуация начала меняться. Почему? Разобраться в этом нам поможет небольшая дискуссия, проведенная в рамках статьи.

В отличие от предыдущих стандартов физического уровня, в частности RS‑423, RS‑422 и RS‑232, появление RS‑485 стало поистине эволюционным этапом. Системы связи с поддержкой данного стандарта представляют собой многоточечную систему и имеют до 32 узлов в одиночной системе (с репитерами до 256).

Примерно в то же время, когда создавались упомянутые выше интерфейсы, используемые в таких приложениях, как компьютерные клавиатуры и мыши, принтеры и оборудование для промышленной автоматизации, интерфейс CANbus проектировался как автомобильная коммуникационная платформа, предложенная Робертом Бошем (Robert Bosch), владельцем компании Robert Bosch GmbH, для снижения стоимости производства авто. Эта шина стала альтернативой традиционным толстым многожильным автомобильным кабелям и упростила их прокладку благодаря применению многоузловых шин. Впервые представленный в модели BMW‑850 в 1986 году, автомобильный CAN-интерфейс сэкономил в ней более 2 км различных проводов! Кроме того, было значительно сокращено количество разъемов, а оценочная экономия веса машины составила 50 кг . Так сложилось, что RS‑485 был предназначен для нужд промышленного рынка, а CAN - для автомобильного и транспортного сегмента, но постепенно он нашел место и в приложениях, скажем так, вне своей юрисдикции, то есть в автомобильной и аэрокосмической отраслях.

Благодаря своей высокой устойчивости при эксплуатации в непростых условиях, характерных для автомобильных приложений, возможностям защиты от сбоев и уникальной обработке сообщений CANbus теперь используется там, где прежде никогда не был распространен. Нынешние рыночные тенденции демонстрируют все более широкое внедрение CANbus, порой заменяющего RS‑485 в традиционных индустриальных программах.

Согласно рыночным отчетам, применение CANbus увеличивается в разы, что является исключительным фактом для рынка интерфейсов. И хотя отчеты не разделяют промышленные и автомобильные рынки, многие согласны с тем, что промышленные рынки составляют около 20–30% от общего объема выпускаемой продукции. Рост использования интерфейсов в автомобильной промышленности можно объяснить распространением электроники, установленной сегодня в автомобилях. Современные автомобили имеют сложные микропроцессорные системы, необходимые для таких функций, как резервные камеры, автоматическая парковка, информационно-развлекательные системы, распознавание слепых зон и многое другое. Появление данных подсистем связано с увеличением числа датчиков и микроконтроллеров в авто, требующихся для обработки информации от всех сложных систем, действующих внутри машины. Еще в 1990‑х годах многие автопроизводители начали переход от ручного переключения передач к автоматическим, а позже и к коробкам передач с электронным управлением, основанным на поступающих на микроконтроллер данных о скорости, положении дроссельной заслонки и информации от барометрических датчиков. Сегодня на одном транспортном средстве можно насчитать свыше 100 датчиков и микроконтроллеров, многие из которых общаются по шине CAN. Даже полностью электрический автомобиль Tesla S имеет внутри 65 микроконтроллеров .

На индустриальном рынке также наблюдается рост внедрения интерфейса CAN. Промышленные CAN-приложения имеют достаточно широкий охват и устанавливаются в самых разнообразных приложениях - от коммерческих беспилотных летательных аппаратов (дронов) до элементов управления лифтом и даже газонокосилками коммерческого назначения. Поставщики микросхем признают этот факт и разрабатывают продукты для удовлетворения все возрастающей потребности в CAN вне традиционного рынка автомобильной промышленности. Другой фактор, способствующий увеличению применения CAN в индустриальной сфере, - это переход многих инженеров‑автомобилестроителей в промышленный сегмент, где они, естественно, применили свой опыт работы с шиной CAN и ее уникальные преимущества. Еще одна причина внедрения интерфейса CAN на промышленном рынке связана с присущей ему отказоустойчивостью и способностью эффективно обрабатывать кадры сообщений на многоузловой шине.

Для того чтобы объяснить преимущества CAN по отношению к RS‑485, лучше всего оценить сходства и различия между двумя стандартами - ISO 11898-2-2016 и TIA/EIA‑485 (сейчас действует ANSI TIA/EIA‑485‑A) соответственно. Оба стандарта определяют уровни приемопередатчиков, которые представлены на диаграмме (рис. 1) для стороны передачи.

Оба протокола имеют дифференциальный выходной сигнал. Выход RS‑485 представляет собой классический дифференциальный сигнал, в котором один сигнал является инвертированным, или зеркальным отражением другого. Выход A - неинвертирующая линия, а выход B - инвертирующая линия. Дифференциальный диапазон +1,5…+5 В равен логической 1 или значению, а пределы –1,5…–5 В - логическому 0 или пробелу. Сигнал с уровнем, лежащим в диапазоне –1,5…+1,5 В, считается как неопределенный. Важно отметить, что когда RS‑485 не используется, то его выход пребывает в состоянии высокого импеданса.

У шины CAN выходной дифференциальный сигнал несколько иной. Так, здесь предусмотрено два выхода в виде CANH- и CANL-линий данных, которые являются отражением друг друга (рис. 1) и представляют собой инвертированную логику. В доминирующем состоянии (бит нуля, используемый для указания приоритета сообщения) CANH-CANL определяются как 0, когда напряжение на них составляет +1,5…+3 В. В рецессивном состоянии (1 бит и состоянии незанятой шины) сигнал драйвера определяется как логическая 1, когда дифференциальное напряжение находится в диапазоне –120…+12 мВ или в приближении к нулю.

Рис. 1. Сравнение допустимых уровней выходных дифференциальных сигналов драйверов RS 485 и CAN

Для стороны приемника стандарт RS‑485 определяет входной дифференциальный сигнал, когда он находится в пределах ±200 мВ…+5 В. Для CAN входной дифференциальный сигнал составляет +900 мВ…+3 В, а рецессивный режим находится в диапазоне –120…+500 мВ. Когда шина пребывает в режиме ожидания или когда не загружена и трансивер находится в рецессивном состоянии, напряжения на линиях CANH и CANL должны быть в рамках 2–3 В.

Как RS‑485, так и CAN имеют необходимый технологический запас по уровням распознавания для работы в приложениях, в которых сигнал может быть ослаблен из-за характеристик и качества используемого кабеля (экранированного или неэкранированного) и длины кабелей, что может сказаться на емкости подключения системы. Для сравнения допустимых уровней входных дифференциальных сигналов со стороны приемника RS‑485 и CAN следует обратиться к рис. 2.

Рис. 2. Сравнение допустимых уровней входных дифференциальных сигналов для RS 485 и CAN со стороны приемника

Кроме того, оба стандарта имеют нагрузочные согласующие резисторы с одинаковым значением 120 Ом, устанавливаемые на концах линии. Эти резисторы необходимы, чтобы обеспечить согласование линии связи по волновому сопротивлению линии передачи и тем самым избежать отражения сигнала. Другие технические характеристики, такие как скорость передачи данных и количество допустимых узлов, носят информационный характер, а не являются строгими требованиями, подлежащими обязательному выполнению. Для удовлетворения нужд рынка большинство выпускаемых RS‑485- и CAN-трансиверов превышает стандартную скорость передачи данных и допустимое количество узлов. Например, интегральный полудуплексный трансивер RS‑485 индустриального класса из микросхемы MAX22500E от компании Maxim достиг скорости в 100 Мбит/с. А новый стандарт CAN-FD, ISO 11898-2:2016, хотя и определяет временные характеристики для скоростей 2 и 5 Мбит/с, но не ограничивает скорость передачи данных значением 5 Мбит/с. CAN-трансиверы превысят требования своего стандарта так же, как и приемопередатчики RS‑485. Что касается устойчивости к синфазному сигналу, параметр CMR (Common-Mode Range, диапазон синфазных напряжений) для RS‑485 составляет –7…+12 В и для CAN –2…+7 В.

Однако многим приложениям требуется более высокая производительность в части CMR, что относится к обоим типам рассматриваемых интерфейсов. Это связано с тем, что они в основном используются для многоузловых шин, а их узлы могут иметь источники питания с разными силовыми трансформаторами или кабели находиться в непосредственной близости к оборудованию с достаточно мощными переменными электромагнитными полями, способными повлиять на заземление между узлами системы. Таким образом, учитывая множество самых различных приложений, работающих в жестких условиях индустриальной среды, часто требуется более высокая устойчивость CMR, выходящая за пределы стандартных уровней –7…+12 В.

Для решения этой проблемы существуют приемопередатчики RS‑485 и CAN нового поколения, которые имеют значительно более широкий диапазон устойчивости к воздействию синфазной помехи, а именно до ±25 В. На диаграмме, приведенной на рис. 3, представлен флуктуирующий диапазон синфазного сигнала для приемопередатчика RS‑485. Несмотря на то, что сигнал синфазного напряжения растет вверх и вниз, пока уровень синфазного напряжения (VCM) находится в пределах допустимого диапазона, он не влияет на дифференциальный сигнал шины и приемник способен принимать и распознавать сигнал на линии без ошибок. Диаграмма на рис. 3 показывает допустимый диапазон изменения синфазного сигнала для RS‑485.

Рис. 3. Пояснение параметра CMR на примере трансивера RS 485

Еще одна особенность, присущая как приемопередатчикам CAN, так и RS‑485, - защита от сбоев. Устройства с защитой от ошибок имеют внутреннюю цепь защиты от воздействия повышенного напряжения на выходы драйвера входа приемника. Это необходимо, чтобы уберечь устройства от случайных коротких замыканий между локальным источником питания и линиями передачи. В данном направлении микросхемы компании Maxim занимают лидирующее положение в отрасли. Они, как, например, широко используемая и в настоящее время MAX13041, гарантируют уровни защиты от сбоев до ±80 В и даже с некоторым дополнительным запасом до полного пробоя и выхода цепи защиты из строя . Причем важно то, что этот уровень защиты гарантируется независимо от того, подано питание на трансивер или он обесточен.

Среди основных причин того, почему в индустриальных приложениях предпочтение отдается CAN-, а не RS‑485‑трансиверам, следует назвать и способ обработки сообщений на шине. В мультиузловой системе, используемой для общения с микропроцессором RS‑485, могут быть случаи, когда несколько сообщений отправляются одновременно. Что иногда приводит к коллизиям, иначе известным как конкуренция. Если подобное происходит, состояние шины может оказаться неверным или неопределенным, что вызовет ошибки данных. Кроме того, такая конкуренция может повредить или ухудшить параметры производительности, когда несколько трансиверов RS‑485 на шине находятся в одном, а один приемопередатчик - в противоположном состоянии. Тогда от одиночного передатчика RS‑485 может потребоваться довольно значительный ток, который, вероятно, вызовет отключение микросхемы из-за превышения максимально допустимой температуры или даже приведет к необратимому повреждению системы. Здесь CANbus по сравнению с протоколом RS‑485 имеет большое преимущество. С помощью CANbus удается разрешить проблему передачи нескольких сообщений на линии путем ранжирования каждого из них.

Рис. 4. Формат кадра передачи данных CAN

Перед тем как приступить к работе по проектированию системы, инженеры назначают разные уровни задач. Ранее упоминалось, что CAN имеет доминантное и рецессивное состояние. Во время передачи сообщение с более высоким назначенным доминантным состоянием «выигрывает» конкуренцию и будет продолжать передачу, в то время как другие узлы с более низким приоритетом будут видеть доминирующий бит и прекратят передавать данные. Этот метод называется арбитражем, где сообщения приоритетны и принимаются в порядке их статуса. Узел, который проигрывает в результате более низкого назначенного приоритета, повторно отправит свое сообщение, когда его уровень окажется доминирующим. Это продолжается для всех узлов, пока они не выполнят передачу. На рис. 4 более подробно рассмотрен формат кадра данных сообщения в протоколе CAN. Эта временная диаграмма и таблица 1 наглядно демонстрируют, где и как происходит арбитраж.

Таблица 1. Формат кадра передачи данных в протоколе CAN

Наименование поля

Длина в битах

Описание

SOF (Start of frame)

Начало кадра

Identifier, выделено зеленым

Предоставляет приоритет сообщения (11 или 29 бит
для стандартной CAN и расширенной CAN, 12 или 32 бит для CAN­FD)

RTR (Remote transmission request), выделено голубым

Удаленный запрос передачи

IDE (Identifier extension bit)

Бит­идентификатор служит для идентификации расширенного формата

Зарезервированный бит для будущего расширения протокола

DLC (Data Length Code), выделено желтым

Код длины данных (4 бит для стандартной CAN, 8 или 9 бит для CAN­FD)

Data Field, выделено красным

0–64 (0–8 байт);
0–512 (0–64 байт)

Поле данных, передаваемые данные
(0–8 байт для стандартного CAN, 0–64 байт для CAN­FD)

CRC (Cyclic redundancy check)

Контрольная сумма, используется для обнаружения ошибок

Бит - разграничитель CRC

ACK (Acknowledgement) slot

Область подтверждения. Доминантный бит при сообщении об ошибке; рецессивный бит при отказе от сообщения об ошибке

Бит­разграничитель подтверждения

EOF (End of frame)

Конец кадра

Арбитраж разрешается во время передачи идентификатора, пример данной ситуации показан в таблице 2. Вне зависимости от топологии сети, даже с новым стандартом CAN-FD, фаза арбитража ограничена скоростью передачи 1 Мбит/с. Но фаза поля данных ограничена только характеристиками приемопередатчика, то есть она может проходить намного быстрее.

Таблица 2. Узел 3 в результате арбитража уступает шину узлу 1 на третьем бите

Биты идентификатора (Поле арбитража)

Стартовый бит

Узел 1

Узел 3

Остановка передачи

Помимо арбитража, уровень канала передачи данных (уровень 2 модели OSI) также способствует повышению надежности всей системы CAN в целом. На этом уровне сообщение кадра неоднократно проверяется на предмет точности и наличия ошибок. Если сообщение получено с ошибками, отправляется кадр ошибки. Он содержит флаг ошибки (Error Flag), который состоит из 6 бит одинакового значения (таким образом нарушая правило вставки битов) и разграничителя ошибки (Error Delimiter), состоящего из 8 рецессивных бит.

Разграничитель ошибки предоставляет определенное пространство, где другие узлы шины могут отправлять свои флаги ошибки после того, как сами обнаружат первый флаг ошибки. С точки зрения уровня сообщений циклическая проверка избыточности (CRC) защищает информацию в кадре добавлением избыточных контрольных битов в конце передачи, которые затем проверяются на принимающей стороне. Если они не совпадают, возникает ошибка CRC. Затем следует контроль фрейма (кадра), который определяет правильность структуры, проверяя битовые поля на фиксированный формат и размер кадра бит-разделителя SOF, EOF, ACK и CRC.

С точки зрения битового уровня существует три проверки на наличие ошибок: подтверждение, контроль бит и набивка бит. Ошибки подтверждения обнаруживаются, когда передатчик не считывает доминантный бит ACK (0). Это указывает на ошибку передачи, обнаруженную получателями, что означает, что ACK был поврежден или не было приемников. Бит-мониторинг проверяет уровень шины для каждого узла для отправленных и принятых бит. Битовая подстановка - метод, который «наполняет» или вставляет дополнительный противоположный бит, когда пять из тех же самых бит встречаются последовательно. Противоположный бит помогает различать кадры ошибок и биты EOF. На принимающей стороне дополнительный бит удаляется. Если шестой бит такой же, как и предыдущие пять, тогда ошибка обнаруживается всеми CAN-узлами и отправляются кадры ошибок. В этом случае оригинальное сообщение необходимо передать повторно, пройдя, естественно, через арбитраж, если на линии есть конфликт.

Подводя итог дискуссии, можно сделать краткий вывод: если рассматривать системы «точка-точка», требующие высокой скорости обмена данными, то здесь, благодаря более высокой скорости и простому кадру, несомненно в выигрыше оказывается интерфейс RS‑485. Но в мультиузловых системах с возможными коллизиями и на скоростях не выше 1 Мбит/с явное преимущество остается за CAN, особенно при организации связи в системе оборудования, работающего в жестких условиях индустриальной среды, в широком диапазоне рабочих температур (для упомянутого ранее MAX13041 –40…+125 °С) и при высоком уровне внешних воздействий, не говоря уже о его «родном поле деятельности» - автомобильной и транспортной сферах.

Как известно, многие системы либо подвергаются воздействию электромагнитных помех, либо страдают от ошибок обслуживающего персонала, который может по невнимательности подать питающее напряжение на линии связи. В этом отношении трансиверы CAN отличаются высокой надежностью, устойчивостью к воздействию значительных разрядов статического электричества и хорошим уровнем защиты от сбоев. Относительный недостаток CAN, а именно то, что передачу слушают все приемники на линии, легко устранить, используя имеющийся в составе кадра передачи идентификатор, да и большой беды в этом, как правило, нет.

Благодаря таким возможностям CAN, как арбитраж, проверка сообщений об ошибках, улучшенная пропускная способность и большее поле данных, легко понять привлекательность CANbus по сравнению с RS‑485 на рынке промышленного оборудования средств автоматизации. CAN-системы могут уделять первоочередное внимание важности сообщений кадров и надлежащим образом обрабатывать критические. Все это позволяет использовать трансиверы CAN, в том числе и от компании Maxim, в аппаратуре самого широкого назначения, а для различных областей применения данная компания также предлагает высокоэффективные интерфейсы с гальванической развязкой .

Под обозначениями RS-232, RS-422 и RS-485 понимаются интерфейсы для цифровой передачи данных. Стандарт RS-232 более известен как обычный СОМ порт компьютера или последовательный порт (хотя последовательным портом также можно считать Ethernet, FireWire и USB). Интерфейсы RS-422 и RS-485 широко применяются в промышленности для соединения различного оборудования.

В таблице приведены основные отличия интерфейсов RS-232, RS-422 и RS-485.

Название RS-232 RS-422 RS-485
Тип передачи Полный дуплекс Полный дуплекс Полудуплекс (2 провода),полный дуплекс (4 провода)
Максимальная дистанция 15 метров при 9600 бит/с 1200 метров при 9600 бит/с 1200 метров при 9600 бит/с
Задействованные контакты TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND* TxA, TxB, RxA, RxB, GND DataA, DataB, GND
Топология Точка-точка Точка-точка Многоточечная
Макс. кол-во подключенных устройств 1 1 (10 устройств в режиме приема) 32 (с повторителями больше, обычно до 256)

* Для интерфейса RS-232 не обязательно использовать все линии контактов. Обычно используются линии данных TxD, RxD и провод земли GND, остальные линии необходимы для контроля над потоком передачи данных. Подробнее вы узнаете далее в статье.

Информация, передаваемая по интерфейсам RS-232, RS-422 и RS-485, структурирована в виде какого-либо протокола, например, в промышленности широко распространен протокол Modbus RTU.

Описание интерфейса RS-232

Интерфейс RS-232 (TIA/EIA-232) предназначен для организации приема-передачи данных между передатчиком или терминалом (англ. Data Terminal Equipment, DTE ) и приемником или коммуникационным оборудованием (англ. Data Communications Equipment, DCE ) по схеме точка-точка.

Скорость работы RS-232 зависит от расстояния между устройствами, обычно на расстоянии 15 метров скорость равна 9600 бит/с. На минимальном расстоянии скорость обычно равна 115.2 кбит/с, но есть оборудование, которое поддерживает скорость до 921.6 кбит/с.

Интерфейс RS-232 работает в дуплексном режиме, что позволяет передавать и принимать информацию одновременно, потому что используются разные линии для приема и передачи. В этом заключается отличие от полудуплексного режима, когда используется одна линия связи для приема и передачи данных, что накладывает ограничение на одновременную работу, поэтому в полудуплексном режиме в один момент времени возможен либо прием, либо передача информации.

Информация по интерфейсу RS-232 передается в цифровом виде логическими 0 и 1.

Логическому «0» (SPACE) соответствует напряжение в диапазоне от +3 до +15 В.

В дополнение к двум линиям приема и передачи, на RS-232 имеются специальные линии для аппаратного управления потоком и других функций.

Для подключения к RS-232 используется специальный разъем D-sub, обычно 9 контактный DB9, реже применяется 25 контактный DB25.

Разъемы DB делятся на Male – «папа» (вилка, pin) и Female – «мама» (гнездо, socket).

Распиновка разъема DB9 для RS-232

Распайка кабеля DB9 для RS-232

Существует три типа подключения устройств в RS-232: терминал-терминал DTE-DTE, терминал- коммуникационное оборудование DTE-DCE, модем-модем DCE-DCE.

Кабель DTE-DCE называется «прямой кабель», потому что контакты соединяются один к одному.

Кабель DCE-DCE называется «нуль-модемный кабель», или по-другому кросс-кабель.

Ниже приведены таблицы распиновок всех перечисленных типов кабеля, и далее отдельно представлена таблица с переводом основных терминов на русский язык.

Распиновка прямого кабеля DB9 для RS-232

Распиновка нуль-модемного кабеля DB9 для RS-232

Таблица с распиновкой разъемов DB9 и DB25.

DB9 DB25 Обозначение Название Описание
1 8 CD Carrier Detect Обнаружение несущей
2 3 RXD Receive Data Прием данных
3 2 TXD Transmit Data Передача данных
4 20 DTR Data Terminal Ready Готовность оконечного оборудования
5 7 GND System Ground Общий провод
6 6 DSR Data Set Ready Готовность оборудования передачи
7 4 RTS Request to Send Запрос на передачу
8 5 CTS Clear to Send Готов передавать
9 22 RI Ring Indicator Наличие сигнала вызова

Для работы с устройствами RS-232 обычно необходимо всего 3 контакта: RXD, TXD и GND. Но некоторые устройства требуют все 9 контактов для поддержки функции управления потоком передачи данных.

Структура передаваемых данных в RS-232

Одно сообщение, передаваемое по RS-232/422/485, состоит из стартового бита, нескольких бит данных, бита чётности и стопового бита.

Стартовый бит (start bit) - бит обозначающий начало передачи, обычно равен 0.

Данные (data bits) – 5, 6, 7 или 8 бит данных. Первым битом является менее значимый бит.

Бит четности (parity bit) – бит предназначенный для проверки четности. Служит для обнаружения ошибок. Может принимать следующие значения:

  • Четность (EVEN), принимает такое значение, чтобы количество единиц в сообщении было четным
  • Нечетность (ODD), принимает такое значение, чтобы количество единиц в сообщении было нечетным
  • Всегда 1 (MARK), бит четности всегда будет равен 1
  • Всегда 0 (SPACE), бит четности всегда будет равен 0
  • Не используется (NONE)

Стоповый бит (stop bit) – бит означающий завершение передачи сообщения, может принимать значения 1, 1.5 (Data bit =5), 2.

Например, сокращение 8Е1 обозначает, что передается 8 бит данных, используется бит четности в режиме EVEN и стоп бит занимает один бит.

Управление потоком в RS-232

Для того чтобы не потерять данные существует механизм управления потоком передачи данных, позволяющий прекратить на время передачу данных для предотвращения переполнения буфера обмена.

Есть аппаратный и программный метод управления.

Аппаратный метод использует выводы RTS/CTS. Если передатчик готов послать данные, то он устанавливает сигнал на линии RTS. Если приёмник готов принимать данные, то он устанавливает сигнал на линии CTS. Если один из сигналов не установлен, то передачи данных не произойдет.

Программный метод вместо выводов использует символы Xon и Xoff (в ASCII символ Xon = 17, Xoff = 19) передаваемые по тем же линиям связи TXD/RXD, что и основные данные. При невозможности принимать данные приемник передает символ Xoff. Для возобновления передачи данных посылается символ Xon.

Как проверить работу RS-232?

При использовании 3 контактов достаточно замкнуть RXD и TXD между собой. Тогда все переданные данные будут приняты обратно. Если у вас полный RS-232, тогда вам нужно распаять специальную заглушку. В ней должны быть соединены между собой следующие контакты:

DB9 DB25 Соединить
1 + 4 + 6 6 + 8 + 20 DTR -> CD + DSR
2 + 3 2 + 3 Tx -> Rx
7 + 8 4 + 5 RTS -> CTS

Описание интерфейса RS-422

Интерфейс RS-422 похож на RS-232, т.к. позволяет одновременно отправлять и принимать сообщения по отдельным линиям (полный дуплекс), но использует для этого дифференциальный сигнал, т.е. разницу потенциалов между проводниками А и В.

Скорость передачи данных в RS-422 зависит от расстояния и может меняться в пределах от 10 кбит/с (1200 метров) до 10 Мбит/с (10 метров).

В сети RS-422 может быть только одно передающее устройство и до 10 принимающих устройств.

Линия RS-422 представляет собой 4 провода для приема-передачи данных (2 скрученных провода для передачи и 2 скрученных провода для приема) и один общий провод земли GND.

Скручивание проводов (витая пара) между собой позволяет избавиться от наводок и помех, потому что наводка одинаково действует на оба провода, а информация извлекается из разности потенциалов между проводниками А и В одной линии.

Напряжение на линиях передачи данных может находится в диапазоне от -6 В до +6 В.

Логическому 0 соответствует разница между А и В больше +0,2 В.

Логической 1 соответствует разница между А и В меньше -0,2 В.

Стандарт RS-422 не определяет конкретный тип разъема, обычно это может быть клеммная колодка или разъем DB9.

Распиновка RS-422 зависит от производителя устройства и указывается в документации на него.

При подключении устройства RS-422 нужно сделать перекрестие между RX и TX контактами, как показано на рисунке.

Т.к. расстояние между приемником и передатчиком RS-422 может достигать 1200 метров, то для предотвращения отражения сигнала от конца линии ставится специальный 120 Ом согласующий резистор или "терминатор". Этот резистор устанавливается между RX+ и RX- контактами в начале и в конце линии.

Как проверить работу RS-422?

Для проверки устройств с RS-422 лучше воспользоваться конвертером из RS-422 в RS-232 или USB (I-7561U). Тогда вы сможете воспользоваться ПО для работы с СОМ портом.

Описание интерфейса RS-485

В промышленности чаще всего используется интерфейс RS-485 (EIA-485), потому что в RS-485 используется многоточечная топология, что позволяет подключить несколько приемников и передатчиков.

Интерфейс RS-485 похож на RS-422 тем что также использует дифференциальный сигнал для передачи данных.

Существует два типа RS-485:

  • RS-485 с 2 контактами, работает в режиме полудуплекс
  • RS-485 с 4 контактами, работает в режиме полный дуплекс

В режиме полный дуплекс можно одновременно принимать и передавать данные, а в режиме полудуплекс либо передавать, либо принимать.

В одном сегменте сети RS-485 может быть до 32 устройств, но с помощью дополнительных повторителей и усилителей сигналов до 256 устройств. В один момент времени активным может быть только один передатчик.

Скорость работы также зависит от длины линии и может достигать 10 Мбит/с на 10 метрах.

Вверх