Анализ характеристик линейных цепей и линейных преобразований сигналов. Преобразование сигналов линейными цепями с постоянными параметрами Цели курсовой работы

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра основ радиотехники и защиты информации

КУРСОВАЯ РАБОТА

Анализ характеристик линейных цепей

И линейных преобразований сигналов

Выполнил:

Руководитель:

Илюхин Александр Алексеевич

Москва 2015

1. Цели курсовой работы. 3

2. Индивидуальное задание. 3

3.Расчеты 4

4. Программа по расчёту и построению амплитудно-частотной, фазо-частотной, переходной и импульсной характеристик цепи при заданных параметрах 10

5. Программа расчёта и построения реакция заданной цепи на заданный сигнал 11

6. Графики 13

1. Цели курсовой работы.

1. Изучить характер переходных процессов в линейных цепях.

2. Закрепить аналитические методы расчета частотных и временных характеристик линейных цепей.

3. Освоить суперпозиционный анализ сигналов.

4. Овладеть суперпозиционным методом расчета реакций линейных цепей.

5. Уяснить влияние параметров цепи на вид ее реакции.

2. Индивидуальное задание.

Вариант 27 (цепь № 7, сигнал № 3).

Рис.1.Электрическая цепь

Рис.2.Сигнал

E =2 В

t и =10 мкс

R =4 кОм

C =1000 пФ

Операторную передаточную характеристику цепи;

Комплексную частотную характеристику цепи;

Амплитудно-частотную характеристику цепи;

Фазо-частотную характеристику цепи;

Переходную характеристику цепи;

Импульсную характеристику цепи.

2. Выполнить суперпозиционный анализ сигнала.

4. Составить программу по расчету и построению амплитудно-частотной, фазочастотной, переходной и импульсной характеристик цепи при заданных ее параметрах.

5. Составить программу расчета и построения реакции заданной цепи на заданный сигнал.

6. Вычислить характеристики и реакцию цепи, указанные в п.п. 4 и 5, построить их графики.

3.Расчеты

3.1. Расчёт характеристик цепи

1. Операторная передаточная характеристика

Рис.3. Обобщённая схема цепи

Для заданной схемы:

Согласно формуле:

Для заданной схемы, изображённой на рис.1,

Где θ=RC – постоянная времени.

2. Комплексная частотная характеристика

Комплексная частотная характеристика определяется из соотношения:

3. Амплитудно-частотная характеристика(АЧХ)

4. Фазочастотная характеристика(ФЧХ)

У данной цепи:

5. Переходная характеристика

У данной цепи:

Т.к. , где x 1 и x 2 – корни уравнения x 2 + bx + c = 0 ,

В нелинейных электрических цепях связь между входным сигналом U Вх. (T ) и выходным сигналом U Вых. (T ) описывается нелинейной функциональной зависимостью

Такую функциональную зависимость можно рассматривать как математическую модель нелинейной цепи.

Обычно нелинейная электрическая цепь представляет совокупность линейных и нелинейных двухполюсников. Для описания свойств нелинейных двухполюсников часто пользуются их вольтамперными характеристиками (ВАХ). Как правило, ВАХ нелинейных элементов получают экспериментально. В результате эксперимента ВАХ нелинейного элемента получают в виде таблицы. Этот способ описания пригоден для анализа нелинейных цепей с помощью ЭВМ.

Для изучения процессов в цепях, содержащих нелинейные элементы, необходимо отобразить ВАХ в математической форме, удобной для расчетов. Для использования аналитических методов анализа требуется подобрать аппроксимирующую функцию, достаточно точно отражающую особенности экспериментально снятой характеристики. Чаще всего используются следующие способы аппроксимации ВАХ нелинейных двухполюсников.

Показательная аппроксимация. Из теории работы p-n перехода следует, что вольт-амперная характеристика полупроводникового диода при u>0 описывается выражением

. (7.3)

Показательную зависимость часто используют при изучении нелинейных цепей, содержащих полупроводниковые приборы. Аппроксимация вполне точна при значениях тока, не превышающих несколько миллиампер. При больших токах экспоненциальная характеристика плавно переходит в прямую линию из-за влияния объемного сопротивления полупроводникового материала.

Степенная аппроксимация. Этот способ основан на разложении нелинейной вольтамперной характеристики в ряд Тейлора, сходящийся в окрестности рабочей точки U 0 :

Здесь коэффициенты …. – некоторые числа, которые можно найти из полученной экспериментально вольтамперной характеристики. Количество членов разложения зависит от требуемой точности расчетов.

Пользоваться степенной аппроксимацией при больших амплитудах сигналов нецелесообразно из-за существенного ухудшения точности.

Кусочно-линейная аппроксимация Применяется в случаях, когда в схеме действуют большие сигналы. Способ основан на приближенной замене реальной характеристики отрезками прямых линий с различными наклонами. Например, передаточная характеристика реального транзистора может быть аппроксимирована тремя отрезками прямых, как показано на рис.7.1.

Рис.7.1 .Передаточная характеристика биполярного транзистора

Аппроксимация определяется тремя параметрами: напряжением начала характеристики , крутизной , имеющей размерность проводимости и напряжением насыщения , при котором возрастание тока прекращается. Математическая запись аппроксимированной характеристики такова:

(7.5)

Во всех случаях ставится задача нахождения спектрального состава тока, обусловленного воздействием на нелинейную цепь гармонических напряжений. При кусочно-линейной аппроксимации схемы анализируют методом угла отсечки.

Рассмотрим для примера работу нелинейной цепи при больших сигналах. В качестве нелинейного элемента используем биполярный транзистор, работающий с отсечкой коллекторного тока. Для этого при помощи начального напряжения смещения Е См рабочая точка устанавливается таким образом, чтобы транзистор работал с отсечкой коллекторного тока, и одновременно подадим на базу входной гармонический сигнал.

Рис.7.2. Иллюстрация отсечки тока при больших сигналах

Угол отсечки θ – половина той части периода, в течение которой коллекторный ток не равен нулю, или, другими словами, часть периода от момента достижения коллекторным током максимума до момента, когда ток становится равным нулю – «отсекается».

В соответствии с обозначениями на рис.7.2 коллекторный ток для I > 0 описывается выражением

Разложение этого выражения в ряд Фурье позволяет найти постоянную составляющую I 0 и амплитуды всех гармоник коллекторного тока. Частоты гармоник кратны частоте входного сигнала, а относительные амплитуды гармоник зависят от угла отсечки. Анализ показывает, что для каждого номера гармоники существует оптимальный угол отсечки θ, При котором ее амплитуда максимальна:

. (7.7)

Рис.7.8 . Схема умножения частоты

Подобные схемы (рис.7.8) часто применяются для умножения частоты гармонического сигнала в целое число раз. Настройкой колебательного контура, включенного в коллекторную цепь транзистора, можно выделить нужную гармонику исходного сигнала. Угол отсечки устанавливается, исходя из максимального значения амплитуды заданной гармоники. Относительная амплитуда гармоники уменьшается с ростом ее номера. Поэтому описанный метод применим при коэффициентах умножения N ≤ 4. Применяя многократное умножение частоты, можно на основе одного высокостабильного генератора гармонических колебаний получить набор частот с такой же относительной нестабильностью частоты, как у основного генератора. Все эти частоты кратны частоте входного сигнала.

Свойство нелинейной цепи обогащать спектр, создавая на выходе спектральные составляющие, первоначально отсутствовавшие на входе, ярче всего проявляются, если входной сигнал представляет собой сумму нескольких гармонических сигналов с различными частотами. Рассмотрим случай воздействия на нелинейную цепь суммы двух гармонических колебаний. Вольтамперную характеристику цепи представим многочленом 2-й степени:

. (7.8)

Входное напряжение помимо постоянной составляющей содержит два гармонических колебания с частотами и , амплитуды которых равны и соответственно:

. (7.9)

Такой сигнал называется бигармоническим. Подставив этот сигнал в формулу (7.8), выполнив преобразования и сгруппировав члены, получим спектральное представление тока в нелинейном двухполюснике:

Видно, что в спектре тока присутствуют слагаемые, входящие в спектр входного сигнала, вторые гармоники обоих источников входного сигнала а также гармонические составляющие с частотами ω1 ω2 и ω1 + ω2 . Если степенное разложение вольтамперной характеристики представлено многочленом 3-й степени, спектр тока будет содержать также частоты . В общем случае при воздействии на нелинейную цепь нескольких гармонических сигналов с разными частотами в спектре тока появляются комбинационные частоты

Где – любые целые числа, положительные и отрицательные, включая нуль.

Возникновение комбинационных составляющих в спектре выходного сигнала при нелинейном преобразовании обусловливает ряд важных эффектов, с которыми приходится сталкиваться при построении радиоэлектронных устройств и систем. Так, если один из двух входных сигналов промодулирован по амплитуде, то происходит перенос модуляции с одной несущей частоты на другую. Иногда за счет нелинейного взаимодействия наблюдается усиление или подавление одного сигнала другим.

На основе нелинейных цепей осуществляется детектирование (демодуляция) амплитудно-модулированных (АМ) сигналов в радиоприемниках. Схема амплитудного детектора и принцип его работы поясняются на рис.7.9.

Рис.7.9. Схема амплитудного детектора и форма выходного тока

Нелинейный элемент, вольтамперная характеристика которого аппроксимирована ломаной линией, пропускает только одну (в данном случае положительную) полуволну входного тока. Эта полуволна создает на резисторе импульсы напряжения высокой (несущей) частоты с огибающей, воспроизводящей форму огибающей амплитудно-модулированного сигнала. Спектр напряжения на резисторе содержит частоту несущей , ее гармоники и низкочастотную составляющую, которая примерно вдвое меньше амплитуды импульсов напряжения. Эта составляющая имеет частоту , равную частоте огибающей, т. е. представляет собой продетектированный сигнал. Конденсатор совместно с резистором образует фильтр низких частот. При выполнении условия

(7.12)

В спектре выходного напряжения остается только частота огибающей. При этом также происходит увеличение выходного напряжения за счет того, что при положительной полуволне входного напряжения конденсатор быстро заряжается через малое сопротивление открытого нелинейного элемента почти до амплитудного значения входного напряжения, а при отрицательной полуволне – не успевает разрядиться через большое сопротивление резистора . Приведенное описание работы амплитудного детектора соответствует режиму большого входного сигнала, при котором ВАХ полупроводникового диода аппроксимируется ломаной прямой.

В режиме малого входного сигнала начальный участок ВАХ диода может быть аппроксимирован квадратичной зависимостью. При подаче на такой нелинейный элемент амплитудно-модулированного сигнала, спектр которого содержит несущую и боковые частоты, возникают частоты с суммарной и разностной частотами. Разностная частота представляет собой продетектированный сигнал, а несущая и суммарная частоты не проходят через фильтр низких частот, образованный элементами и .

Обычный прием детектирования частотно-модулированных (ЧМ) колебаний состоит в том, что ЧМ колебание сначала преобразуется в АМ колебание, которое затем детектируется вышеописанным способом. В качестве простейшего преобразователя ЧМ в АМ может служить расстроенный относительно несущей частоты колебательный контур. Принцип преобразования ЧМ сигналов в АМ поясняется на рис.7.10.

Рис.7.10. Преобразование ЧМ в АМ

При отсутствии модуляции рабочая точка находится на скате резонансной кривой контура. При изменении частоты изменяется амплитуда тока в контуре, т. е. происходит преобразование ЧМ в АМ.

Схема преобразователя ЧМ в АМ показана на рис.7.11.

Рис.7.11. Преобразователь ЧМ в АМ

Недостатком такого детектора являются искажения продетектированного сигнала, возникающие из-за нелинейности резонансной кривой колебательного контура. Поэтому на практике применяются симметричные схемы, обладающие лучшими характеристиками. Пример такой схемы приведен на рис.7.12.

Рис.7.12. Детектор ЧМ сигналов

Два контура настраиваются на крайние значения частоты, т. е. на частоты И . Каждый из контуров преобразует ЧМ в АМ, как описано выше. АМ колебания детектируются соответствующими амплитудными детекторами. Низкочастотные напряжения и противоположны по знаку, и с выхода схемы снимается их разность. Характеристика детектора, т. е. зависимость выходного напряжения от частоты, получается путем вычитания двух резонансных кривых и более линейна. Такие детекторы называются дискриминаторами (различителями).

Интересными и полезными для радиотехнических приложений свойствами обладают линейные системы, которые описываются нестационарными системными операторами зависящими от времени. Закон преобразования входного сигнала здесь имеет вид

причем благодаря линейности системы

при любых постоянных

Цепи, описываемые равенством (12.1), называются параметрическими. Термин связан с тем, что в составе таких цепей обязательно присутствуют элементы, параметры которых зависят от времени. В радиотехнических цепях находят применение следующие параметрические резисторы конденсаторы и индуктивности

Отличительная черта линейной параметрической системы - наличие вспомогательного источника колебаний, управляющего параметрами элементов.

Важная роль, отводимая в радиотехнике параметрическим цепям, обусловлена их способностью преобразовывать спектры входных сигналов, а также возможностью создания малошумящих параметрических усилителей.

12.1. Прохождение сигналов через резистивные параметрические цепи

Параметрическую цепь называют резистивной, если ее системный оператор имеет числа , зависящего от времени и служащего коэффициентом пропорциональности между входным и выходным сигналами:

Простейшей системой такого вида служит параметрический резистор с сопротивлением . Закон, связывающий мгновенные значения напряжения и тока в этом двухполюснике, таков:

Параметрический резистивный элемент может описываться также переменнойво времени проводимостью

Реализация параметрических резистивных элементов.

На практике параметрически управляемые резисторы создают следующим образом.

На вход безынерционного нелинейного двухполюсника с вольт-амперной характеристикой подают сумму даух колебаний: управляющего напряжения и напряжения сигнала При этом управляющее напряжение значительно превышает по амплитуде полезный сигнал. Ток в нелинейном двухполюснике можно записать, разложив вольт-амперную характеристику в ряд Тейлора относительно мгновенного значения управляющего напряжения:

Амплитуду сигнала выбирают столь малой, что в формуле (12.5) можно пренебречь вторыми и более высокими степенями величины Обозначив через приращение тока в двухполюснике, вызванное наличием сигнала, получим

Ниже будут изучены важные применения параметрических резистивных элементов рассмотренного вида.

Преобразование частоты.

Так называют трансформацию модулированного сигнала, связанную с переносом его спектра из окрестности несущей частоты в окрестность некоторой промежуточной частоты совершаемую без изменения закона модуляции.

Преобразователь частоты состоит из смесителя - параметрического безынерционного элемента, и гетеродина - вспомогательного генератора гармонических колебаний с частотой служащего для параметрического управления смесителем. Под действием напряжения гетеродина дифференциальная крутизна вольт-амперной характеристики смесителя периодически изменяется во времени по закону

Если на входе преобразователя частоты действует напряжение АМ-сигнала , в соответствии с выражениями (12.6) и (12.7) в выходном токе появляется составляющая ПО см

В качестве промежуточной принято выбирать частоту ток на промежуточной частоте

является АМ-колебанием с тем же законом модуляции, что и входной сигнал.

Для выделения составляющих спектра с частотами, близкими к промежуточной частоте, в выходную цепь преобразователя включают колебательный контур, настроенный на частоту

Рис. 12.1. Структурная схема супергетеродинного приемника

Преобразование частоты широко используется в радиоприемных устройствах - так называемых супергетеродинах. Структурная схема супергетеродинного приемника изображена на рис. 12.1.

Сигнал, принятый антенной, через фильтрующие входные цепи и усилитель радиочастоты (УРЧ) поступает на преобразователь. Выходной сигнал преобразователя является модулированным колебанием с несущей частотой, равной промежуточной частоте приемника. Основное усиление приемника и его частотная избирательность, т. е. способность выделять полезный сигнал из помех с другими частотами, обеспечиваются узкополосным усилителем промежуточной частоты (УПЧ).

Большое достоинство супергетеродина - неизменность промежуточной частоты; для настройки приемника приходится перестраивать лишь гетеродин и в некоторых случаях колебательные системы, которые имеются во входных цепях и в УРЧ.

Отметим, что преобразователь частоты одинаково реагирует на сигналы с частотами радиотехнике говорят, что возможен прием как по основному, так и по зеркальному каналу. Во избежание неоднозначности настройки приемника требуется обеспечить такую избирательность резонансных систем, включенных между антенной и преобразователем частоты, чтобы практически подавить сигналы зеркального канала.

Крутизна преобразования.

Эффективность работы преобразователя частоты принято характеризовать особым параметром - крутизной преобразования которая служит коэффициентом пропорциональности между амплитудой тока промежуточной частоты и амплитудой немодулированного напряжения сигнала, т. е. Как следует из соотношения (12.8),

Итак, крутизна преобразования равна половине амплитуды первой гармоники дифференциальной крутизны параметрического элемента.

Предположим, что вольт-амперная характеристика нелинейного элемента, входящего в преобразователь частоты, квадратична: . В отсутствие сигнала к элементу приложена сумма напряжений смещения и гетеродина:

Дифференциальная крутизна преобразователя изменяется во времени по закону

Обращаясь к формуле (123), видим, что в данном случае

(12.11)

Таким образом, при постоянном уровне полезного сигнала на входе амплитуда выходного сигнала преобразователя пропорциональна амплитуде напряжения гетеродина.

Пример 12.1. В преобразователе частоты использован нелинейный элемент (транзистор) с характеристикой имеющей параметр Резонансное сопротивление колебательного контура в коллекторной цепи . Амплитуда смодулированного входного сигнала амплитуда напряжения гетеродина . Найти значение - амплитуду напряжения промежуточной частоты на выходе преобразователя.

По формуле (12.11) вычисляем крутизну преобразования Амплитуда тока промежуточной частоты в цепи коллектора . Полагая выходное сопротивление транзистора достаточно высоким, гак что можно пренебречь его шунтирующим действием на колебательный контур, находим

Синхронное детектирование.

Предположим, что в преобразователе частоты гетеродин настроен точно на частоту сигнала, поэтому дифференциальная крутизна изменяется во времени по закону

Подав на вход такого устройства АМ-сигнала , получаем выражение для тока обусловленного сигналом:

Выражение, стоящее здесь в квадратных скобках, содержит постоянную составляющую которая зависит от сдвига фазы между сигналом гетеродина и несущим колебанием входного сигнала. Поэтому в спектре выходного тока появится низкочастотная составляющая

этот ток пропорционален переменной амплитуде АМ-сигнала.

Синхронным детектором называют преобразователь частоты, работающий при условии ; для выделения полезного сигнала на выходе включен ФНЧ, например, параллельная RC-цепь.

При использовании синхронных детекторов на практике между несущим колебанием входного сигнала и колебанием гетеродина должно поддерживаться жесткое фазовое соотношение.

Наиболее благоприятен режим работы при если же , то полезный выходной сигнал отсутствует. Чувствительность синхронного детектора к сдвигу фаз позволяет использовать его для измерения фазовых соотношений между двумя когерентными колебаниями.

Ниже показана конкретная методика расчета синхронного детектора.

Пример 12.2. В синхронном детекторе использован транзистор, характеристика которого аппроксимируется двумя отрезками прямых. Параметры аппроксимации: . Амплитуда напряжения гетеродина , постоянное напряжение смещения отсутствует Немодулированное напряжение полезного сигнала с амплитудой сдвинуто по фазе относительно колебаний гетеродина на угол . Определить изменение уровня постоянного напряжения на выходе синхронного детектора, вызванное полезным сигналом, если сопротив ление резистора .

При данном виде вольт-амперной характеристики нелинейного элемента дифференциальная крутизна может принимать лишь два значения:

Поэтому график изменения дифференциальной крутизны во времени представляет собой периодическую последовательность прямоугольных видеоимпульсов. Угол отсечки тока , определяющий длительность этих импульсов, найдем по формуле (см. гл. 2)

Разлагая функцию в ряд Фурье, вычисляем амплитуду первой гармоники крутизны:

Полезный сигнал вызывает согласно (12.13) приращение тока через транзистор на величину . Отсюда находим изменение уровня постоянного напряжения на выходе синхронного детектора:

Спектр сигнала на выходе параметрического резистивного элемента.

Анализ работы преобразователя частоты и синхронного детектора убеждает, что в параметрическом резистивном элементе возникают спектральные составляющие, которые отсутствуют на входе этого элемента.

Рассмотрим параметрическое преобразование вида (12.3) с общих позиций спектрального анализа. Очевидно, параметрический резистивный элемент функционирует как перемножитель входного сигнала и управляющего колебания

Запишем следующее соответствие между сигналами и их преобразованиями Фурье:

На основании теоремы о спектре произведения сигналов (см. гл. 2) спектральная плотность выходного сигнала представляет собой свертку

(12.14)

В прикладном отношении большой интерес представляет случай, когда управляющее колебание является периодическим с некоторым заданным периодом и может быть представлено рядом Фурье

(12.15)

где - угловая частота управляющего сигнала.

Как известно, подобный неинтегрируемый сигнал имеет спектральную плотность, отличную от нуля лишь в дискретных точках на оси частот:

(12.16)

Подставив данное выражение в формулу (12.14), получим спектр сигнала на выходе параметрического элемента:

(12.17)

Спектр стробированного сигнала.

Анализ общей формулы (12.17) удобно провести применительно к частному, но широко распространенному на практике случаю. Пусть управляющая функция на протяжении каждого периода равна единице в пределах отрезка времени длительностью ; в остальные моменты времени функция равна нулю.

В радиотехнике операцию умножения сигнала на функцию подобного вида называют стробированием сигнала.

Легко убедиться, что коэффициенты комплексного ряда Фурье (12.15) применительно к рассматриваемой стробирующей функции выражаются следующим образом:

(12.18)

где - скважность стробирукяцей последовательности.

Подстановка этого результата в формулу (12.17) приводит к выводу о том, что спектральная плотность стробированного сигнала

Методы анализа процессов в линейных цепях (системах)

При анализе процессов необходимо определить отклик цепи на входной сигнал в виде сигнала заданной формы. Из основ теории цепей известно, что для анализа прохождения гармонических сигналов через линейные цепи используют законы Кирхгофа, методы контурных токов и узловых потенциалов, метод эквивалентного генератора и другие несложные методы. Эти методы применимы и для анализа при произвольном воздействии. Однако в теории связи имеют дело с импульсными сигналами, которые более разнообразны по форме и спектральному составу и описываются большим числом параметров. Эти цепи сложны и по структуре. При анализе воздействия сигналов на такие цепи применяют спектральный и операторный методы и метод интеграла наложения.

Спектральный метод. Свойства линейных цепей (четырехполюсников) можно определить с помощью такого параметра, как частотный коэффициент передачи. Для этого необходимо рассмотреть отклик линейного четырехполюсника на входное воздействие и оценить их связь между собой.

Введем понятия комплексных амплитуд входного и выходного гармонических напряжений с угловой (круговой) частотой со:

Отношение комплексных амплитуд выходного и входного гармонических напряжений одной частоты и определяет частотный коэффициент передачи (чаще просто - коэффициент передачи) линейной цепи (линейного четырехполюсника):

Модуль коэффициента передачи К(со) = |К(со)| называют амплитудно- частотной характеристикой (АЧХ), а аргумент ср(со) - фазочастотной характеристикой (ФЧХ) линейного четырехполюсника. Как правило, АЧХ имеет один максимум, а ФЧХ изменяется монотонно в зависимости от частоты (рис. 4.2).

В области некоторой полосы частот отклик цепи на входное воздействие начинает уменьшаться. Поэтому используют понятие полосы пропускания (рабочей полосы) - области частот, где модуль коэффициента передачи К(со) не менее 1/V2 = 0,707 своего максимального значения. Наиболее же удобен на практике нормированный модуль коэффициента передачи К/К шкс, максимальное значение которого равно 1. Значение 1/V2, по которому определяют полосу пропускания линейной цепи, введено не случайно. Дело в том,

Рис. 4.2.

а - АЧХ; б - ФЧХ что на границах полосы пропускания модуль коэффициента передачи но мощности, равный отношению выходной и входной мощностей, уменьшается в два раза. На рис. 4.2 полоса пропускания заключена в области от нижней со н до верхней со в частоты, и поэтому ее ширина Дсо 0 = со в - со,. На практике часто используют циклическую частоту /= /(2). Тогда полоса пропускания цепи

где/ и - нижняя, а/ в - верхняя граничные циклические частоты.

К вопросу о частотном коэффициенте передачи можно подойти и с другой точки зрения. Если на вход линейной цени подается гармонический сигнал единичной амплитуды, имеющий комплексную аналитическую модель вида u BX (t) = e J(0t , то сигнал на ее выходе запишется как u Bbai (t) = К(Подставляя эти выражения в формулу (4.1), после несложных преобразований запишем частотный коэффициент передачи в форме дифференциального уравнения

Согласно формуле (4.3) частотный коэффициент передачи линейной цепи, у которой связь между входным и выходным сигналами описывается дифференциальным уравнением с постоянными коэффициентами, представляет собой дробно-рациональную функцию переменной у со. При этом коэффициенты этой функции совпадают с коэффициентами дифференциального уравнения.

С помощью частотного коэффициента передачи К(со) можно определить сигнал на выходе линейного четырехполюсника. Пусть на входе линейного четырехполюсника с частотным коэффициентом передачи К(со) действует непрерывный сигнал произвольной формы в виде напряжения м вх (?). Применив прямое преобразование Фурье (2.29), определим спектральную плотность входного сигнала 5 вх (со). Тогда спектральная плотность сигнала на выходе линейной цепи

Проведя обратное преобразование Фурье (2.30) от спектральной плотности (4.4), запишем выходной сигнал как

Операторный метод. Наряду со спектральным применяют операторный метод, базирующийся на представлении преобразованиями Лапласа входных и выходных сигналов. Термин «операторный метод» введен О. Хевисайдом. Он предложил символический способ решения линейных дифференциальных уравнений, описывающих переходные процессы в линейных цепях. Метод Хевисайда основан на замене оператора дифференцирования d/dt комплексным параметром р , который переводит анализ сигналов из временной области в область комплексных величин. Рассмотрим комплексный или вещественный аналоговый сигнал u(t ), определенный при t > 0 и равный нулю в момент времени t = 0.

Преобразование Лапласа этого сигнала есть функция комплексной переменной р , выраженная интегралом

Аналитическую запись сигнала u(t) называют оригиналом , а функцию U(p) - его изображением по Лапласу (проще - изображением). Интеграл

  • (4.6) внешне напоминает прямое преобразование Фурье (2.29). Однако между ними имеется принципиальное различие. В интеграл прямого преобразования Фурье (2.29) входит мнимая частотаусо, а в интеграл Лапласа
  • (4.6) - комплексный оператор, который можно рассматривать как комплексную частоту р = а + усо (а - вещественная составляющая), при этом рассматривают только положительные значения времени t. За счет множителя е~ ш под интегралом в формуле (4.6) для U(p) преобразование Лапласа возможно и для неинтегрируемых функций u(t).

Использование понятия комплексной частоты в интегральном преобразовании делает его более эффективным по сравнению с преобразованием Фурье. Например, по формуле (2.29) невозможно непосредственно определить спектр функции включения а(?) = 1(0- Однако для того же сигнала непосредственно по формуле (4.6) легко отыскать его операторное изображение:

или, поскольку е~ а ‘°° = 0, получим

Из приведенного примера очевидно, что повышение эффективности преобразования (4.6) обусловлено наличием множителя е -а/ , который обеспечивает сходимость данного интеграла даже для сигналов, не удовлетворяющих условию сходимости интеграла . Наличие этого множителя позволяет интерпретировать преобразование Лапласа (4.6) как представление сигнала в виде «спектра» из затухающих колебаний е ш е,ш = = е (а+уe j (в символической форме).

Преобразование Лапласа (4.6) обладает линейными свойствами, аналогичными свойству линейности преобразования Фурье:

Из других свойств отметим более простое преобразование изображений при дифференцировании и интегрировании сигнала по сравнению с аналогичными преобразованиями Фурье. Упрощение связано не только с комплексностью оператора р , но и с тем, что оригиналы анализируют на бесконечном интервале .

По аналогии с обратным преобразованием Фурье вводят обратное интегральное преобразование Лапласа , которое осуществляют с помощью вычетов:

где а, - вещественная переменная, отражаемая на комплексной плоскости.

Решение дифференциальных уравнений операторным методом. Преобразование Лапласа позволяет решать линейные дифференциальные уравнения с постоянными коэффициентами. Пусть необходимо найти решение дифференциального уравнения (4.1). Установим ряд допущений:

  • входной сигнал u BX (t) = 0 при t
  • входной сигнал содержит в себе только те функции, для которых существуют преобразования Лапласа;
  • начальные условия нулевые, т.е. г/ вых (0) = 0.

Введем соответствия между оригиналами входного и выходного сигналов и их изображениями по Лапласу:

Осуществив преобразование Лапласа обеих частей формулы (4.1), получим

В теории автоматических систем сомножитель перед U Bblx (p ) в формуле (4.8) обозначают через Q(p), называя собственным оператором системы, а сомножитель перед U nx (p) - через R(p) и называют оператором воздействия.

Операторный метод базируется на важнейшей характеристике, являющейся отношением изображений выходного и входного сигналов:

и называемой передаточной функцией {операторным коэффициентом передачи) линейной цепи.

Воспользовавшись уравнением (4.8), находим

Сравнение формул (4.3) и (4.9) показывает, что функция К(р ) отражает результат аналитического переноса комплексного частотного коэффициента передачи /((со) с мнимой оси jeo на всю область комплексных частотр = а + jco.

Если известна передаточная функция К(р), то выходную реакцию цепи на заданное входное воздействие u nx (t) можно определить по следующей схеме:

  • записать изображение входного сигнала u BX (t) -? U BX (p)
  • найти изображение выходного сигнала 0 иых (р) = K(p)U ux (p)
  • вычислить выходной сигнал u ttblx (t) - 5 ? 0 вых (р).

Корни знаменателя p v p 2 > ->Р п в формуле (4.9), т.е. корни функции

называют полюсами передаточной функции К{р).

Соответственно корни числителя z v z 2 , z m функции К(р), т.е. корни функции

характеризуют как пули передаточной функции.

В реальных электрических цепях п> т.

При делении числителя на знаменатель в формуле (4.9) появляется постоянный множитель К 0 , и это уравнение принимает так называемое нуль- полюсное представление передаточной функции

Действительные значения коэффициентов а п и Ъ т дифференциального уравнения (4.16) обусловливает следующее свойство полюсов и нулей передаточной функции линейного четырехполюсника: либо все эти числа вещественные, либо образуют комплексно-сопряженные пары.

Рис. 4.3.

Очень часто используют наглядный прием отображения нулей и полюсов передаточной функции на комплексной плоскости а,усо. При этом полюса принято обозначать крестиками, а нули - кружками. Например, на рис. 4.3 кружком в начале координат показан нуль, а крестиками 1 и 2 - полюсы передаточной функции некоторой колебательной цени. Полюсы 1 и 2 отрицательны, вещественны и определяют разность двух затухающих экспонент. Комплексно-сопряженные полюсы 3 и 4 определяют колебательный характер передаточной функции К(р) с тем большим затуханием, чем левее они расположены, и с тем большей частотой затухающих колебаний, чем дальше они отходят вверх и вниз от вещественной оси а. Расположение полюсов в левой полуплоскости соответствует затухающему характеру передаточной функции. Нули передаточной функции могут располагаться как в левой, так и в правой полуплоскости.

Динамическое представление линейных цепей. Метод интеграла наложения. Свойства линейных цепей часто проще оценить видом их отклика на воздействие элементарных сигналов. Применение нашло два вида динамического представления линейных цепей. Согласно первому из них для анализа отклика цепи в качестве элементарных сигналов служат прямоугольные импульсы длительностью Д, в пределе стремящиеся к дельта-функции. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее. При втором способе элементарными сигналами служат ступенчатые функции, возникающие в виде функций включения через равные промежутки времени А. Высота каждой ступеньки равна приращению сигнала на интервале времени Д.

Одним из элементарных электрических сигналов, применяемых при анализе прохождения различных колебаний через линейные цепи (четырехполюсники), является дельта-функция 5(?). Другим элементарным электрическим сигналом в технике связи служит функция включения а(?).

Дельта-функция и функция включения связаны между собой аналитически. Результатом дифференцирования функции включения является дельта-функция

Соответственно

Пример 4.1

Найдем производную от произведения экспоненциального импульса и функции включения u(t) = e~ at v(t).

Решение

Для функции е~ ш в момент времени t = 0 е~ а "° = 1. Производная В результате вычислений получим следующее выражение:

Импульсная и переходная характеристики линейной цепи. Линейность и стационарность позволяют легко найти реакцию линейной системы теоретически на любой входной сигнал, зная всего одну функцию - реакцию системы на поданную на вход дельта-функцию 8(t). Эту реакцию называют импульсной характеристикой или ядром свертки линейной цепи (системы) и обозначают h(t). Различные виды реальных импульсных характеристик линейных цепей h v h 2 , h 3 показаны на рис. 4.4, а.


Рис. 4.4.

а - различные виды импульсных; б - переходная

Откликом линейной цепи на единичную функцию является переходная характеристика g(t) (рис. 4.4, б). Положим, что требуется определить выходной сигнал и вых (?) линейной цепи (линейного четырехполюсника), если известны ее импульсная характеристика h(t) и входной сигнал u BX (t). Заменим приближенно кривую входного сигнала u nx (t) ступенчатой линией в виде совокупности достаточно коротких прямоугольных импульсов, имеющих одинаковую длительность Ат (рис. 4.5, а).

Рис. 4.5.

а - входной сигнал; б - отклики на импульсы и выходной сигнал

Формирование выходного сигнала можно пояснить следующим образом. Достаточно малый «кусочек» входного сигнала длительностью Ат подается на вход анализируемой цепи. Если выбрать длительность импульсов Ат бесконечно малой, то отклик линейной цепи на первый по счету прямоугольный импульс будет приближенно равен отклику той же цепи на дельта-функцию (а это будет импульсная характеристика), умноженному на площадь (и пх (0)Ат) первого импульса, т.е. u nx (0)Axh(t) (рис. 4.5, б). Откликом линейной цепи на второй импульс с достаточной точностью является произведение г/ вх (Ax)Axh(t - Ат), где и вх (Ат)Ат - площадь этого импульса, а величина h(t - Ат) - импульсная характеристика линейной цепи, соответствующая моменту времени t = Ат. Следовательно, для некоторого произвольного момента времени t = пАх (п - число условно сформированных импульсов, приходящихся на интервал времени ) отклик линейной цепи приближенно выразится суммой (штриховая линия на рис. 4.5, б)

Если длительность импульсов Ат последовательно приближается к нулю, то малое приращение времени Ат превращается в dx, а операция суммирования трансформируется в операцию интегрирования по переменной т = kAx:

Для реальных линейных цепей всегда h(t) = 0 при t

Это фундаментальное соотношение в теории линейных цепей представляет собой интеграл наложения, или интеграл Дюамеля Напомним, что

интеграл (4.13) называют сверткой двух функций (см. гл. 2). Итак, линейная система осуществляет свертку входного сигнала со своей импульсной характеристикой, в результате чего получается выходной сигнал. Формула (4.13) имеет ясный физический смысл: линейная стационарная цепь, выполняя обработку входного сигнала, проводит операцию взвешенного суммирования всех его мгновенных значений, существовавших «в прошлом».

Техника свертки. Для вычисления свертки по выражению (4.13) функция импульсного отклика реверсируется по своей координате, т.е. строится в режиме обратного времени, и движется относительно функции входного сигнала в сторону возрастания значений L В каждый текущий момент времени значения обеих функций перемножаются, а произведение интегрируется в пределах окна импульсного отклика. Полученный результат относится к той координатной точке, против которой находится значение импульсного отклика /?(()). В теории электрических цепей применяют другую, эквивалентную форму интеграла Дюамеля:

Итак, линейная система преобразует относительно переменной t функции, входящие в формулу (4.14). При этом входной сигнал преобразуется в выходной сигнал м вых (?)> а дельта-функция 8(t - т) - в импульсную характеристику h(t - т). Функция м вх (т) не зависит от переменной t и поэтому остается без изменений. В результате получается формула, показывающая, что выходной сигнал линейной системы равен свертке входного сигнала с ее импульсной характеристикой:

Определим связь импульсной характеристики с частотным коэффициентом передачи линейной цепи. Воспользуемся комплексной формой гармонического сигнала единичной амплитуды и вх (?) = ехр(/со?). Подставив это выражение в формулу (4.14) и вынеся его за знак интеграла, находим отклик цепи:

Интеграл в скобках является комплексной функцией частоты

и представляет собой коэффициент передачи (здесь сделана формальная замена т на t).

Выражение (4.15) устанавливает чрезвычайно важный факт - частотный коэффициент передачи и импульсная характеристика линейной цепи связаны прямым преобразованием Фурье. Очевидно и наличие обратного преобразования Фурье для коэффициента передачи и импульсной характеристики

с помощью которого можно легко определить импульсную характеристику цепи по ее частотному коэффициенту передачи.

Поскольку существует простая связь между 6(7т) и a(t) по формулам (4.10) и (4.11), все выводы для линейной цепи, сделанные при помощи дельта-функции, легко переносятся па функцию включения. Проведя аналогичные рассуждения и расчеты, можно показать возможность простого представления входных и выходных сигналов с помощью функции включения a(t) и переходной характеристики линейной цепи g(t). Разбив входной сигнал (рис. 4.6) на элементарные функции включения Д мст(7) (здесь А и - амплитуда элементарного скачка входного напряжения) и поступая так же, как и при выводе соотношения (4.12), получаем еще одну форму интеграла Дюамеля, позволяющую определить сигнал на выходе линейной цепи:

Рис. 4.6.

В теории линейных цепей установлена определенная связь между импульсной и переходной характеристиками. Поскольку переходная характеристика neiiHg(?) есть отклик на единичную функцию ст(/,), которая, в свою очередь, представляет собой интеграл от дельта-функции 8(7) (см. формулу (4.11)), то и между функциями h(t.) и g(t) существует интегральное соотношение

Экспериментально импульсную характеристику линейной цепи можно построить, подавая на ее вход короткий импульс единичной площади и уменьшая длительность импульса при сохранении площади до тех пор, пока сигнал на выходе перестанет изменяться. Это и будет импульсная характеристика цепи.

  • Жан-Мари Дюамель (J. Duhamel, 1797-1872) - французский математик.

Чтобы преобразовать входной сигнал в удобную для хранения, воспроизведения и управления форму, необходимо обосновать требования к параметрам систем преобразования сигнала. Для этого надо математически описать связь между сигналами на входе, выходе системы и параметрами системы.

В общем случае система преобразования сигнала является нелинейной: при вхождении в нее гармонического сигнала на выходе системы возникают гармоники других частот. Параметры нелинейной системы преобразования зависят от параметров входного сигнала. Общей теории нелинейности не существует . Одним из способов описать связь между входным E вх (t ) и выходным E вых (t ) сигналами и параметром K нелинейности системы преобразования является следующий:

(1.19)

где t и t 1 – аргументы в пространстве выходного и входного сигналов соответственно.

Нелинейность системы преобразования определяется видом функции K .

Чтобы упростить анализ процесса преобразований сигнала, используют допущение о линейности систем преобразований. Это допущение применимо к нелинейным системам, если сигнал имеет малую амплитуду гармоник, либо когда систему можно рассматривать как совокупность линейного и нелинейного звеньев. Примером такой нелинейной системы являются светочувствительные материалы (подробный анализ их преобразующих свойств будет сделан ниже).

Рассмотрим преобразование сигнала в линейных системах. Система называется линейной , если ее реакция на одновременное воздействие нескольких сигналов равна сумме реакций, вызываемых каждым сигналом, действующим отдельно , т. е. выполняется принцип суперпозиции :

где t , t 1 – аргументы в пространстве выходного и входного сигналов соответственно;

E 0 (t , t 1) – импульсная реакция системы.

Импульсной реакцией системы называется выходной сигнал, если на вход подан сигнал, описываемый дельта-функцией Дирака. Эту функцию δ(x ) определяют тремя условиями:

δ(t ) = 0 при t ≠ 0; (1.22)
(1.23)
δ(t ) = δ(–t ). (1.24)

Геометрически она совпадает с положительной частью вертикальной оси координат, т. е. имеет вид луча, выходящего вверх из начала координат. Физической реализацией дельта-функции Дирака в пространстве является точка с бесконечной яркостью, во времени – бесконечно короткий импульс бесконечно большой интенсивности, в спектральном пространстве – бесконечно сильное монохроматическое излучение.

Дельта-функция Дирака обладает следующими свойствами:

(1.25)
(1.26)

Если импульс происходит не на нулевом отсчете, а при значении аргумента t 1 , то такую "сдвинутую" на t 1 дельта-функцию можно описать как δ(t t 1).

Чтобы упростить выражение (1.21), связывающее выходной и входной сигналы линейной системы, принимают допущение о нечувствительности (инвариантности) линейной системы к сдвигу. Линейная система называется нечувствительной к сдвигу , если при сдвиге импульса импульсная реакция изменяет только свое положение, но не изменяет своей формы , т. е. удовлетворяет равенству:

E 0 (t , t 1) = E 0 (t t 1). (1.27)

Рис. 1.6. Нечувствительность импульсной реакции систем

или фильтров к сдвигу

Оптические системы, являясь линейными, чувствительны к сдвигу (не инвариантны): распределение, освещенность и размер "кружка" (в общем случае не являющегося кругом) рассеяния зависят от координаты в плоскости изображения. Как правило, в центре поля зрения диаметр "кружка" меньше, а максимальное значение импульсной реакции больше, чем по краям (рис.1.7).

Рис. 1.7. Чувствительность импульсной реакции к сдвигу

Для нечувствительных к сдвигу линейных систем выражение (1.21), связывающее входной и выходной сигналы, приобретает более простой вид:

Из определения свертки следует возможность представить выражение (1.28) в несколько ином виде:

что для рассматриваемых преобразований дает

(1.32)

Таким образом, зная сигнал на входе линейной и инвариантной к сдвигу системы, а также импульсную реакцию системы (отклик ее на единичный импульс), по формулам (1.28) и (1.30) можно математически определить сигнал на выходе системы, не реализуя физически саму систему.

К сожалению, из указанных выражений невозможно непосредственно найти одну из подынтегральных функций E вх (t ) или E 0 (t ) по второй и известному выходному сигналу.

Если линейная, нечувствительная к сдвигу система состоит из нескольких, последовательно пропускающих сигнал фильтрующих звеньев, то импульсная реакция системы представляет собой свертку импульсных реакций составляющих фильтров, что в сокращенном виде можно записать как

что соответствует сохранению неизменного значения постоянной составляющей сигнала при фильтрации (это станет очевидным при анализе фильтрации в частотной области).

Пример . Рассмотрим преобразование оптического сигнала при получении на светочувствительном материале миры с косинусоидальным распределением интенсивности. Мирой называется решетка или ее изображение, состоящие из группы полос определенной ширины. Распределение яркости в решетке обычно имеет прямоугольный или косинусоидальный характер. Миры необходимы для экспериментального изучения свойств фильтров оптических сигналов.

Схема устройства для записи косинусоидальной миры представлена на рис. 1.8.

Рис. 1.8. Схема устройства для получения миры
с косинусоидальным распределением интенсивности

Равномерно перемещающуюся со скоростью v фотопленку 1 освещают через щель 2 шириной A. Изменение освещенности во времени производится по косинусоидальному закону. Это достигается за счет прохождения светового пучка через осветительную систему 3 и два поляроидных фильтра 4 и 5. Поляроидный фильтр 4 равномерно вращается, фильтр 5 неподвижен. Вращение оси подвижного поляризатора относительно неподвижного обеспечивает косинусоидальное изменение интенсивности проходящего светового пучка. Уравнение изменения освещенности E (t ) в плоскости щели имеет вид:

Фильтрами в рассматриваемой системе являются щель и фотопленка. Так как подробный анализ свойств светочувствительных материалов будет приведен ниже, то проанализируем только фильтрующее действие щели 2. Импульсную реакцию E 0 (х ) щели 2 шириной A можно представить в виде:

(1.41)

то окончательный вид уравнения сигнала на выходе щели следующий:

Сравнение Е вых (x ) и Е вх (x ) показывает, что они отличаются лишь наличием множителя в переменной части. График функции типа sinc представлен на рис. 1.5. Она характеризуется осциллирующим с постоянным периодом убыванием от 1 до 0.

Следовательно, при увеличении значения аргумента этой функции, т. е. при росте произведения w 1 A и уменьшении v , амплитуда переменной составляющей сигнала на выходе падает.

Кроме того, эта амплитуда будет обращаться в нуль, когда

Это имеет место при

Где n = ±1, ±2…

В таком случае вместо миры на пленке получится равномерное почернение.

Изменения постоянной составляющей сигнала а 0 не произошло, т. к. импульсная реакция щели здесь являлась нормированной в соответствии с условием (1.37).

Таким образом, регулируя параметры записи миры v , A , w 1 , можно подобрать оптимальную для данного светочувствительного материала амплитуду переменной составляющей освещенности, равную произведению a sinc ((w 1 A )/(2v )), и предотвратить брак.

Вверх